FEMdesigner AD Accuracy Verification Examples

Elastic Analysis

1. Stress concentration in plate with hole

From Shigley, Mechanical Engineering Design, McGraw-Hill, $1^{\text {st }}$ Ed, 1986, Table A-23, page 673

Length $=15 \mathrm{~m}$, Width $=5 \mathrm{~m}$, Thickness $=1 \mathrm{~m}$, hole radius $=0.5 \mathrm{~m}$ Young's modulus $=1000$ Pa, Poisson's ratio $=0$

Left face fixed, right face loaded with -100 Pa
Theoretical result: Maximum Normal X Stress $=-312.5$
Results:

Default mesh with 50 mm elements specified in hole face

Max X Stress $=-304.6$
Error $=2.5 \%$

2. Thick cylinder under internal pressure, with radial symmetry constraint

Inner radius, $\mathrm{b}=0.5$, outer radius, $\mathrm{a}=1$, pressure, $\mathrm{q}=10$,
5 degree slice was simulated, with a gap-to-ground symmetry constraint on the angled face and a traditional symmetry restraint on the bottom face.

Young's modulus $=200 \mathrm{e} 3$, Poisson's ratio $=0.3$
From Roark's formulas for Stress and Strain, 6th Ed., Table 32, case 1a:
At b, Hoop stress $=q\left(a^{2}+b^{2}\right) /\left[\left(a^{2}-b^{2}\right)\right]=16.67$, Radial stress $=-q=-10$
At a, Hoop stress $=2 . q \cdot b^{2} /\left(a^{2}-b^{2}\right)=6.67$, Radial Stress $=0$
Results (default mesh):

Radial Stress at $b=-10.08$, error $=0.8 \%$
Radial stress at $a=-0.06$, target is zero
Hoop Stress at $\mathrm{b}=16.72$, error $=0.3 \%$
Hoop Stress at a $=6.52$, error $=2.2 \%$

Plot on xy plane, z thickness $=0.6 \mathrm{~m}$
Young's modulus $=210 \mathrm{GPa}$
Poisson's ratio $=0.3$
Symmetry restraints and x, y held on outer edge, z restraint is at midline. Load is 1 MPa in z direction.

Desired result of Y Stress at bore on long radius and loaded corner $=5.38 \mathrm{MPa}$

Because the midline z restraint cannot be applied to an unstructured tetrahedral mesh, we will compare the FEMdesigner AD tetrahedral model to the corresponding FEMdesigner standalone hex mesh model, where such a restraint is possible.

Hex model, fixed midline, $\mathrm{Sy}=5.34$, error=0.4\%

Hex model, fully fixed edge, Sy=5.15

Tet Model, unstructured mesh, fully fixed edge, $\mathrm{Sy}=5.01$

Error $=6.8 \%$ from the theoretical structured mesh result

4. Natural frequencies of a rectangular plate

Reference: Blevins, Formula for Natural Frequency and Mode Shape, Van Nostrand Rheinhold Company, Inc., 1979 Table 11-4, Case 11, Page 256.

Length $=0.25 \mathrm{~m}$, Width $=0.1 \mathrm{~m}$, Thickness $=0.005 \mathrm{~m}$
Density $=7850 \mathrm{~kg} / \mathrm{m}^{3}$
Youngs Modulus $=2 \mathrm{e} 11 \mathrm{~Pa}$
Poissons Ratio $=0.3$
Local Element Size on face set at 0.01 m
One Long End Fully Fixed, Two Short Ends Simply Supported

Natural Frequency Results (Hz)			
Mode Target $\underline{\text { Result }}$ $\underline{\text { Error }}$ 1 595.7 595.5 $\underline{0.03 \%}$ 2 1129.55 1124.6 $\underline{0.44 \%}$ 3 2051.79 2048.3 $\underline{0.17 \%}$ 4 2906.73 2925.7 $\underline{0.65 \%}$ 5 3366.48 3362.4 $\underline{0.12 \%}$			

